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Abstract-The general linearized problem of stability of equilibrium of an elastic continuum subjected to
follower-type surface tractions is fonnulated and it is indicated how an adjoint system may be constructed. It is
proved that the two sets of eigenvalues of the original and adjoint systems are identical and that each member
of the set is a stationary value for a variation of the displacement functions. These properties are then exploited
to establish an approximate method of stability analysis which is shown to be more powerful than the commonly
used Galerkin method. An illustrative example concludes the presentation.

INTRODUCfION

THE problem ofstability ofequilibrium ofa linearly elastic continuum subjected to follower­
type surface loads was first formulated by Bolotin [1], who emphasized that the resulting
set of differential equations of motion and boundary conditions constitutes a non-self­
adjoint boundary value problem. Therefore approximate solutions of this and similar
nonconservative problems which are governed by complex differential equations of high
order must be constructed with caution. Indeed, the widely-used Galerkin method does
not provide an estimate of the order of magnitude of the error involved, nor does it, in
general, guarantee convergence. It was only recently that Leipholz [2, 3] was able to prove
the convergence of the Galerkin method for a restricted class of one-dimensional problems
governed by non-self-adjoint differential equations.

Thus it seems desirable to develop such approximate methods of solving more general
nonconservative stability problems which, on one hand, would be based at least partially
on a firm mathematical foundation, and, on the other hand, would provide effective
means for numerical treatment. The road to possible success in this endeavor may be
thought to lie along the application of variational principles which have proved to be so
powerful in the study of conservative eigenvalue problems. Yet, at first sight, this road is
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blocked by the inability of classical variational principles to encompass path-dependent
processes. The block, however, may be removed by following some ideas suggested by
Chandrasekhar [4J in his studies of hydrodynamic stability in which he employed the
concept of adjoint systems.

The purpose of the present study is to show that by using the adjoint boundary value
problem of an elastic continuum subjected to follower-type surface loads, an approximate
method for the determination of the eigenvalues may be evolved. It is proved that the
approximate eigenvalues are in error of order two or higher in the assumed eigenfunctions.
As a by-product of the present development it will become evident that Galerkin's method
and the proposed method will coincide only in those cases in which the original and the
adjoint problems are governed by identical boundary conditions.

To illustrate the application of the proposed method, the problem of a cantilevered bar
subjected at its free end to a follower load, first solved exactly by Beck [5J, is reconsidered.

STABILITY OF AN ELASTIC CONTINUUM

Let us consider an isotropic, homogeneous, elastic solid occupying a volume Vbounded
by a finite surface S. It will be assumed that on one part of the boundary of the solid So
the displacements are prescribed so as to preclude a rigid body motion. The body is at
rest and in a state of initial stress (1ij, i,j = 1,2,3, due to the applied nonconservative
(follower) forces on the surface S - So of the solid. To study the stability of this rest position
the system is slightly perturbed and the type of ensuing motion is studied. Referred to an
orthogonal cartesian coordinate system xj' Bolotin [1Jhas obtained the following equations
for the ensuing motion:

a (1 aUk) a ( aui ) a
2
Ui .

ax j I'.ijkl ox, +{3ox j (1jk aX
k

- p ot2 = 0 III V

aUk aUi
Aijkl-
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nj +{3(1jk-anj = {3Pi on S-So

Xl Xk

Ui = 0 on So (3)

(4)
Aijkl = A()iJ.(jkl +2jl()lk() jl

()oo = { 0, i # j
IJ 1, i = j'

In equations (IH4), p is the mass density, Uj is the displacement vector measured from
the undisturbed state and nj is the outward positive unit normal vector to S. No body
forces are assumed to be present and {3 is a parameter associated with the magnitude of
externally applied surface tractions. In equation (4), A and jl are Lame's constants of
elasticity. The repeated indices are summed over the range of their definitions and Pj are
the components of perturbations of the applied surface tractions and their forms will
depend on the behavior of the nonconservative forces. They will generally be homogeneous
functions of displacements and their derivatives with respect to both space and time.
In the present study, however, it suffices to restrict Pi to the following expression:

(5)
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where aij and hj are coefficients which are independent of the vector ii j and its derivatives
but in general are functions of spatial coordinates x j'

We may assume a solution of the above boundary value problem in the form

iiix l,X2,X3,t) = UiXl,x2,x3)eiwt, i = (-l)t

which results in the following eigenvalue problem:

o ( aUk) 0 ( OUi)- Aijkl- +13- (Jjk- -AUi = 0
OXj OXl OXj OXk

, OUk OUi f3( OUi)
Aijkr~-nj+ f3(Jjk-;-n j = aijUj+ bj-;-

uX, uXk uXj

Uj = 0 on So

A _w2 .

in V

on S-So

(6)

(7)

(8)

(9)

Equations (6H8) constitute a non-self-adjoint homogeneous system and stability of
the solid will be governed by the character of the eigenvalues Am, m = 1,2, ... 00, for
nontrivial solutions. In view of the fact that the applied surface tractions are not derivable
from a potential, it is not possible to express the eigenvalues Am in the form of a ratio of
two positive-definite integrals, and thus the usefulness of variational principles seems
dubious in this case.

THE ADJOINT SYSTEM

By constructing an adjoint system by means ofcertain mathematical relations analogous
to the definitions in the theory of ordinary differential equations, A may be expressed in
terms of the original and the adjoint variables, and as a consequence A will assume a
stationary value. In the theory of ordinary differential equations, a system adjoint to one
governed by a differential equation and boundary conditions may be constructed formally
by repeated integration by parts [6]. Being guided by this observation we examine the
problem

a(' OUf) 13 0 ( our) * * _ .OXj Aijkl OX, + OXj (Jjk oX
k

- A Ui - 0 m V

Ur = 0 on So

(10)

(11)

(12)

as being possibly adjoint to that given by equations (6H8). Here, cij is a function of bj , Uj

and its derivatives. If an adjoint system is to be defined through equations (lOHI2), one
must obtain cij by solving a certain homogeneous integral equation on the surface S So.
The above-mentioned integral equation reduces to satisfying the following:

(13)
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Expression (13) involves three independent equations in nine unknown quantities e;j

and thus an adjoint system is not uniquely defined [6]. As a consequence of (13) the
following holds:

(14)

r * [ 0 ( aUk) 0 ( au;) ] dJ
v

Uj oXj A;jkl oX1 +f30Xj (fjk oXk v

r [0 ( our) a ( out)]= J
v

Uj OXj Ajjkl OX/ +f30Xj (fjk oXk dV.

This expression appears to be similar to Maxwell's reciprocity relations in conservative
systems, in which case Uj == ut. The bracketed terms are recognized to be resultant forces
associated with the original and the adjoint systems, respectively.

Now let Am, m = 1,2, ... 00, be the eigenvalues of equations (6H8), and A*m,
m = 1,2, ... 00, those of equations (lOHI2), while the corresponding eigenfunctions are
uj and ur, respectively. From (6), (10) and (14), we have

mf *n - J. *n[ a ( aUk) f3~( au'!')] dVA v uiUj dV - V Uj OXj AUk/OX/ + OXj (fjk OXk

Iv ui' [o:J Ajjkl o;;,n) + f3 O:j ((fjk~;J] dV = A*" Iv U'!'Ut" dV. (15)

Therefore,

(Am-A*") Iv u'!'ur"dV = O. (16)

At this point we wish to apply the argument of Roberts [6] to prove that the sets of
eigenvalues {Am} and {A*m} are identical. Let us suppose that {Am} and {A*"} are not
identical sets, then

f. u~nu'!' dV = O'• 1 ,

V

r *" [ a (' aUk) 0 ( oUi')] d _Jv Uj OXj "-Uk/ OXI + f3 OXj (fjk OXk V - 0 (17a)

and for the special case when m = n,

Iv urmu';'dV O. (17b)

(18)
11 (say).
/2

If the set of eigenvectors {u'!'} is complete, equation (17b), together with equation (l7a),
would imply that urm is identically zero, which is not nontrivial. Hence the two sets of
eigenvalues are identical. Also, similarly to the property of orthogonality of principal
modes in the theory of small vibrations, equation (17a) reveals that the two sets of eigen­
functions {ui} and {urm

} are bi-orthonormal, i.e. each function of either set is orthogonal
to every member of the other set except those which belong to the same eigenvalue.

From (15) it also follows that

r *m [0 ( oUk) a ( aUi')]
Am = Jv UI ~. Aijk1~ +f3~ (fjkfu;. dV

f u'!'u~mdV
1 I

V
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Let us consider now the effect on Am due to infinitesimal variations c5u~ and c5urm

which are arbitrary except that they satisfy the boundary conditions (7), (8) and (11), (12).
Therefore,

(19)

Equation (19) reduces, after application of the divergence theorem and satisfaction of
boundary conditions, to

(20)

Equation (20) is clearly a useful version of a variational principle and implies that if
equations (6) and (10) are obeyed, c5Am is zero with an accuracy of first order for all small
arbitrary variations c5uj and c5urm that satisfy the boundary conditions (7), (8) and (11), (12),
respectively. Thus a definite statement can be made regarding the error involved in stipu­
lating that the eigenvalues are stationary values.

AN APPROXIMATE METHOD OF STABILITY ANALYSIS

The extremum property of the eigenvalues Am, as expressed by equation (20), suggests
an approximate procedure for their determination, in the spirit of approximate methods
for self-adjoint systems based on variational principles. We may select two sets of trial
functions U':'(C1.1' C1. 2 , .••) and Urm(C1.T, C1.~, ...) which satisfy the appropriate boundary
conditions and contain undetermined parameters C1.j and C1.j. An approximate expression
ofthe eigenvalues Am is obtained, by using equation (18), as a function of these parameters.
A stationary value of Am is then obtained by determining the parameters from equations
of the type

which is reminiscent of the Rayleigh-Ritz procedure for conservative systems.
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ILLUSTRATIVE EXAMPLE

(21)Osxsl

In this section we wish to apply the approximate method discussed above to investigate
the stability of equilibrium of a cantilevered bar subjected to a follower load. The governing
equations of motion may be expressed as [IJ

d4 u d2 u
-+F----w2 u = O'
dx4 dx2 '

du
u= - = 0

dx

d2u d3u
-=-=0
dx2 dx 3

at x = 0 }.

at x = 1

(22)

In equations (21) and (22), dimensionless quantities are employed and w denotes the
frequency of oscillation. The equations of an adjoint system of this problem, which was
first discussed by Nemat-Nasser and Herrmann [7J, are as follows:

(23)

du*
u* = - = 0

dx at x = 0 l.
at x = 1f

(24)

The eigenvalue w2 in the two problems will be the same as established in general in
the previous section, and we wish to determine it approximately. We assume, then, that
u and u* may be written in the form:

N

U= L IXnUn
n~l

N

u* = L IX:U:
n~l

(25)

(26)

where Un' u: are certain assumed functions of x which satisfy the boundary conditions
(22) and (24), respectively, and IXn , oc: are constants to be determined as discussed. We
multiply (21) by u* and integrate over the length. If we substitute the expansions (25) and
(26), the following relation is obtained:

N

L 1X;::lXnAmn
m,n= 1

N

L oc:lXnBmn
m,n::= 1

(27)
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where

A = 11
* (?4

Un
F

d2Un
) d .mn um d4 + d 2 x

o X X

Bmn = f U:Undx.

To obtain the best possible result, we must now seek an extremum of the expression
for w 2 considered as a function of the parameters an and a:. A simple and familiar way
would be to treat w 2 as a Lagrangian undetermined multiplier and seek directly the
stationary vaiue of the following:

(28)

by requiring that

Since uand u* are functions that satisfy the adjoint relations in the sense discussed
before, it is a simple matter to show that oI/orx: and oI/oam would result in two matrix
relations which are adjoint to each other and thus they would yield identical eigenvalues.
Therefore, in the sequel only the following relation will be considered:

(29)

Equation (29) is a homogeneous, linear, algebraic equation in rxn and, therefore, a nontrivial
solution exists only if the determinant formed by the coefficients of rxn vanishes. This results
in a polynomial equation for w2 which represents approximately the frequency equation
of the system.

Let us consider the following specific trial functions with N = 2:

u* = a* {x2 _ 2(F
2

+4F +2~'~X3 + F
2
+ 12 x4}

1 F2+6F +72 F2+6F + 72

a*{ 3_ 2(F2i-:12F+120) 4 ~!+6F+72 5}
+ 2 X F2 + 16F+240 x + F2+ 16F+240x .

(30)

(31)

Functions (30) and (31) satisfy the boundary conditions (22) and (24), respectively. Following
the procedure as discussed before, we obtain the frequency equation:
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4 4 FA FB
011 = 3- A +SB +70 - 60

6 6 F 2FA FB
0 12 = l-SA+SB+ io -3s-+ 28

4,2,F 2,1,
021 = I-sA +3 B +30-105 AF+84BF

022 = ~-~A' +~B'+2F -~A'F +~B'F
5 5 7 35 28 42

71 31 59
1111 = - 630 +336 A -756 B

__ 103 ~A __ 79 B
1112 - 1680+840 1800

31 177 , 73 ,
1121 = - 336+ (42)(54)A (18)(60)B

43 79 A' 19 B'
1122 = - 840 + 1800 - 495

A = 2(F2+4F +24)
F2+6F+72

B = F
2

+12
F2+6F+ 72

A' = 2(F2 + 12F+ 120)
F2+16F+240

, F2+6F+72
B = F2 + 16F +240 .

Equation (32) will yield distinct real roots for vanishing F, and when F is increased
the two roots will coalesce at the critical value F = Fer beyond which (32) will yield complex
roots. By trial and error Fer is computed to be 19'45, whereas a more precise calculation by
Beck [5] yields Fer = 20·05. Incidentally, if one uses only the trial function (30), the method
of Galerkin yields Fer 20·6. This result was first computed by Levinson [8].
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A6cTpaKT-OrrpeAenJleTCJl 06ll.1aJl nHHeapH30BaHHaJi 3aAa'la YCTOH'IHBOCTH paBHOBeCHJI yrrpyroro KOHTHHy­
yMa, rrOABeplKeHHOro AeHcTBHIO cneAYlOll.IHX, rroBepxHocTHbIX yCHnHH. YKa3bIBaeTCJl crroco6 rrOCTpOeHHJI
COrrpJllKeHHOH CHCTeMbI. )l,oKa3bIBaeTCJI, 'ITO ABa MHOlKeCTBa C06cTBeHHbIX 3Ha'leHHH rrepBOHa'lanbHbIX H
COrrpJllKeHHbIX CHCTeM J1BnJlIOTCJI OAHHaKOBbIMH, H TO, 'ITO KalKAbIH '1neH MHOlKeCTBa rrpeACTaBnJleT
CTaI.\HOHapHoe 3Ha'leHHe AnJi BapHaI.\IUI <!>YHKI.\HH rrepeMeIl.\eHHH. 3aTeM pa3BHBalOTCJI YKa3aHHbIe BbIll.Ie
CBOHCTBa B I.\enblO yCTaHoBneHHJI rrpH6nHlKeHHoro MeTOAa 3aAa'lH YCTOH'IHBOCTH. npeAnaraeMbIH MeTOA
OKa3bIBaeTCJI 60nee CYll.leCTBeHHbIM no cpaBHeHHIO C 06bI'IHO Hcnonb3yeMbIM MeTOAOM ranepKHHa.
npHBOAHTCJI npHMep AnJi HnnlOCTpaI.\HH pa60TbI.


